first_imgKINGSTON: For his outstanding leadership in guiding Leicester City to its first Barclays Premier League title, telecommunications firm Digicel, one of the main sponsors of the country’s senior men’s national senior football team, salutes Reggae Boy Wes Morgan on the club’s historic achievement. Describing it as “another proud achievement for Jamaica”, Digicel CEO, David Butler, is in high praise for the champion captain. “Against all odds, as captain, Wes Morgan demonstrated solid determination and the will to win in leading his team to a modern-day fairytale ending. Leicester’s accomplishment will go down as one of the greatest achievements in sport and we are so proud that it happened under the captaincy of a Jamaican,” said Butler. The inspirational defender is known for drumming up support globally for the Reggae Boyz, especially during the lead up to tackling other teams vying to qualify for the World Cup. In March, Morgan attended the handover ceremony at Digicel’s headquarters in Kingston, where the Jamaica Football Federation (JFF) received another US$3 million (nearly J$350 million) towards the development of various national teams, including the Reggae Boyz, as they take on the Road to Russia. Morgan had tweeted a photo from the event with six other team members to further attract global support for the mission. Digicel is hoping that Morgan becoming the first Jamaican international football player to win the Barclays Premier League will add a fresh motivation to the national team. “This will surely lift the spirits of the Reggae Boyz as they prepare for the Copa America tournament and another important series of qualifying games. When Wes is a champion, Jamaica is a champion,” Butler praised.last_img read more

first_img Close Ola electric vehiclestwitterIndia is planning to order ride-hailing giants like Ola and Uber to go electric by having a fleet of 40 percent electric vehicles by 2026. The plan includes a step-by-step increase in the conversion of the fleet.According to reports, the companies could have a fleet of 2.5 percent electric vehicle units (EVUs) by 2021, five percent by 2022 and gradually increase the electrification process to about 40 percent of the fleet by 2026.The emphasis on electrification is due to rising aspects of oil imports and growing pollution. There have been several meetings by the Niti Aayog with ministers on the EV policy. The clean-chit towards the support of electric vehicles was given on May 28 by Niti Aayog, ministries of road transport, power, renewable energy, steel, and heavy industries.Future electrification plans for private and public transport Tata Tiago and Ultra Electric busTata MotorsAccording to the plans explained to Reuters, 2026 would play a vital role in the electrification of public and private transports. The government plans on selling only electric cars and buses from April 2026, irrespective of the modes of usage. The same applies to scooters and motorcycles used for commercial purposes.Major companies like Tata Motors and Ashok Leyland have been informed about the plans of manufacturing electric buses for intra-city travel. Estimations on targets of electrification by the government are expected to be five percent of the fleet by 2023 to 30 percent of the fleet by 2026.Other initiatives taken worldwideChina has taken the biggest initiative of electrifying its auto market through its target of electric vehicle sales. It also lured taxi operators by offering incentives. It holds a record of selling 1.3 million electric vehicles in 2018, which is the highest in the world.There has also been a collaboration between BMW and Jaguar Land Rover (JLR) to build better electric engines and transmissions for a new generation of EVUs.Ola is trying to raise money from auto giants like Hyundai and Kia Motors and also partner with South Korean giants to build India-specific electric vehicles.India has been pushing forward the idea of having electric vehicles for public transport to meet its commitment to the Paris Agreement.  Electric vehicles become new trend in AP to fight pollutioncenter_img IBTimes VideoRelated VideosMore videos Play VideoPauseMute0:01/0:58Loaded: 0%0:02Progress: 0%Stream TypeLIVE-0:57?Playback Rate1xChaptersChaptersDescriptionsdescriptions off, selectedSubtitlessubtitles settings, opens subtitles settings dialogsubtitles off, selectedAudio Trackdefault, selectedFullscreenThis is a modal window.Beginning of dialog window. Escape will cancel and close the window.TextColorWhiteBlackRedGreenBlueYellowMagentaCyanTransparencyOpaqueSemi-TransparentBackgroundColorBlackWhiteRedGreenBlueYellowMagentaCyanTransparencyOpaqueSemi-TransparentTransparentWindowColorBlackWhiteRedGreenBlueYellowMagentaCyanTransparencyTransparentSemi-TransparentOpaqueFont Size50%75%100%125%150%175%200%300%400%Text Edge StyleNoneRaisedDepressedUniformDropshadowFont FamilyProportional Sans-SerifMonospace Sans-SerifProportional SerifMonospace SerifCasualScriptSmall CapsReset restore all settings to the default valuesDoneClose Modal DialogEnd of dialog window. COPY LINKAD Loading …last_img read more

first_img Journal information: Proceedings of the National Academy of Sciences (Phys.org) — In a tale worthy of Sherlock Holmes, scientists in the School of Chemistry at the University of Bristol, UK have solved a biochemical mystery that had previously proven elusive for 70 years: How the fungus Talaromyces stipitatus produces stipitatic acid (6), which is a tropolone, one of an atypical group of fungal natural products – that is, small molecules produced by genetically encoded pathways – with a seven-carbon ring. (Most natural products, such as cholesterol or phenylalanine, have five or six carbons in rings.) The researchers used a two-part biosynthetic approach – gene deletion and alternate genetic expression – to investigate the molecular pathway in question. Professor Russell J. Cox, Postgraduate student Jack Davison and other researchers engaged in the study faced several long-standing obstacles to showing that 3-methylorcinaldehyde is the direct product of a fungal nonreducing polyketide synthase (NR-PKS) which most likely appends the methyl group from S-adenosyl methionine during biosynthesis of the tetraketide, and which uses a reductive release mechanism to produce the observed aldehyde. “Gene knockouts have been one of the most useful tools in the toolkit of the biosynthetic chemist,” Cox tells Phys.org, “but knockouts can’t answer complex questions like these. We now make extensive use of heterologous expression – that is, moving the gene to a ‘clean’ host and switching it on.”The scientists then monitor the host organism for the production of new compounds which we isolate and identify. The chemical structure of the new compound tells them a great deal about the chemistry which must have been used to make it. “In this case,” Cox continues, “we showed that the TropA gene encodes a polyketide synthase which makes 3-methylorcinaldehyde. Expression also allows us to do more complex experiments – for example, by truncating or mutating the gene – and in this way we discovered the reductive release mechanism and the fact that the programmed methylation occurs during chain extension rather than after chain-building and ring formation.”Tropolone biosynthesis was one of the longest-standing problems in the field of biosynthesis and some of the most distinguished organic chemists of the last century were fascinated by it, but progress had been very limited. “We realized that combining chemical knowledge with genome sequence data could give us the start we needed,” Cox explains. “We already knew a lot about polyketide biosynthesis in fungi, and this allowed us to narrow down the potential genes involved to just four. We then used chemical knowledge to narrow this further to a single gene cluster.” Proof then came from the knockout and expression studies. Explore further Copyright 2012 Phys.Org All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com. More information: Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis, PNAS May 15, 2012 vol. 109 no. 20 7642-7647, doi: 10.1073/pnas.1201469109 Involvement of tspks1 (tropA) in the biosynthesis of methylorcinaldehyde and tropolones in T. stipitatus. PKS domains: SAT, starter unit acyl transferase; KAS, ketosynthase; AT, acyl transferase; PT, product template; ACP, acyl carrier protein; CMeT, C-methyl transferase; R, acyl CoA thiolester reductase. HPLC analysis of tspks1 KO: (A) UV chromatogram at 260 nm for WT T. stipitatus; (B) UV chromatogram at 260 nm for T. stipitatus tspks1 KO. HPLC analysis of tspks1 expression in A. oryzae: (C) UV chromatogram at 293 nm for untransformed A. oryzae; (D) UV chromatogram at 293 nm for A. oryzae expressing aspks1; (E) UV chromatogram at 293 nm for A. oryzae expressing tspks1. Copyright © PNAS, doi: 10.1073/pnas.1201469109 Looking ahead, the team is currently working on systematic methods to express many genes in fungi. “At present this is easy in bacteria, because in bacteria a single promoter can switch on lots of genes in parallel,” notes Cox. “In fungi, however, each gene needs its own promoter, so this has limited progress. In collaboration with our colleagues in the School of Biological Sciences at Bristol we’re developing systems which can express a dozen or so fungal genes in parallel. This will allow the researchers to investigate much more complex systems in the future.In addition, Cox adds, “I do believe that computational biology and chemistry will eventually provide answers to complex questions like this – but at the moment, while computational methods allow us to formulate good questions, lab work is still needed to find the answers. We’re working in an area with very many unknowns, so it’s difficult for computational methods which rely on current knowledge to act predictively with any accuracy. In fact,” notes Cox, “this is a powerful reason why fundamental discoveries are still so important: they’ll form the basis for future predictions.”Cox points out that he and his team will also continue to study the TropB-D enzymes in vitro. “Chemical methods of classical enzymology will allow us to determine their precise mechanisms.”Cox also articulates how comparing the T. stipitatus tropolone biosynthetic cluster with other known gene clusters allows clarification of important steps during the biosynthesis of other fungal compounds, including the xenovulenes, citrinin, sepedonin, sclerotiorin, and asperfuranone. “Fungal genomes generally are much bigger than their bacterial counterparts by roughly 10 times, and they contain many more genes and gene clusters encoding the biosynthesis of complex compounds” he explains. “Barely any of the known fungal gene clusters have been linked to the molecules they must encode. Our work now allows the understanding of a set of genes which encodes the biosynthesis of polyketides followed by oxidative modifications and these occur frequently in fungi. Until now these clusters were mysterious, but now we can – at least partially – begin to understand what they may do. Secondly, knowledge of the gene clusters will allow us to go hunting for new clusters more effectively.” For example, puberulic acid is a potent antimalarial compound, but its gene cluster is unknown – and the team predicts that the cluster should be very similar to the T. stipitatus tropolone gene cluster.In terms of other research and applications that might benefit from their findings, Cox says that understanding biosynthetic pathways is a key strand of the new science of Synthetic Biology. “One can think of the gene clusters and biosynthetic enzymes they encode as building blocks of new biological entities. In the future,” he concludes, “it will be possible to combine the genetic and chemical knowledge of biosynthetic pathways to produce bioactive compounds – such as drugs and agrochemicals – using biology rather than chemistry. This offers huge advantages in terms of sustainability.” Citation: Friendly Fungi: Elucidating the fungal biosynthesis of stipitatic acid (2012, May 18) retrieved 18 August 2019 from https://phys.org/news/2012-05-friendly-fungi-elucidating-fungal-biosynthesis.html How tropolones synthesized in fungi: 70-year-old chemical mystery solved This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img read more